

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra elektroenergetiky

Vliv tvaru dutinky na výbojovou činnost uvnitř pevných elektroizolačních materiálů

Influence of Cavity Shape on Discharge Activity in Solid Electrical Insulation Materials

Bakalářská práce

Studijní program:Elektrotechnika, energetika, managementStudijní obor:Aplikovaná elektrotechnika

Vedoucí práce: Ing. Ondřej Šefl

Vojtěch Douda Praha 2021

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Příjmení:	Douda	Jméno: Vojtěch	Osobní číslo: 477534
Fakulta/ústav:	Fakulta elektr	otechnická	
Zadávající kate	dra/ústav: Kate	dra elektroenergetiky	
Studijní progran	n: Elektrotechnil	ka, energetika a management	
ÚDAJE K BAK	(ALÁŘSKÉ PR	RÁCI	
Název bakalářské	práce:		
Vliv tvaru dutink	y na výbojovou	činnost uvnitř pevných elektroizolačn	iích materiálů
Vázev bakalářské	práce anglicky:		
Influence of Cav	ity Shape on Dis	charge Activity in Solid Electrical Ins	ulation Materials
okyny pro vyprac	cování:		
 4) Provedte experir 5) Porovnejte výsle Seznam doporuče 	nenty, při nichž bud dky experimentů s t né literatury:	ete pozorovat parametry a paterny CV v dutir teoretickými předpoklady.	nkách o rúzných tvarech a rozměrech
[1] KÜCHLER, And ISBN 978-3-642-11 [2] MENTLÍK, Václa [3] ZÁLIŠ, Karel. Č 80-200-1358-X.	reas. High Voltage I 992-7. w. Diagnostika elekti ástečné výboje v izo	Engineering: Fundamentals – Technology – / rických zařízení. Praha: BEN - Technická litera plačních systémech elektrických strojů. 1. Pra	Applications. Berlin: VDI-Buch, 2018. atura, 2008. ISBN 978-80-7300-232-9 aha: Academia, 2005. ISBN
lméno a pracovišt	ě vedoucí(ho) bal	kalářské práce:	
Ing. Ondřej Šefl,	katedra elektro	oenergetiky FEL	
lméno a pracovišt	ě druhé(ho) vedo	ucí(ho) nebo konzultanta(ky) bakalářské	práce:
Datum zadání ba	kalářské práce: 🕯	21.09.2020 Termín odevzdání b	akalářské práce: 05.01.2021
Platnost zadání b	akalářské práce:		

Abstrakt

Tato bakalářská práce se zabývá problematikou částečných výbojů se zaměřením na porovnání parametrů těchto výbojů v závislosti na rozměrech defektu v PET-G materiálu. V prvé části je kladen důraz na popis problematiky, vzniku a důsledků výskytu částečných výbojů. Elektrickým i neelektrickým metodám detekce částečných výbojů je společně s modelováním výbojů ve střídavém elektrickém poli věnována druhá část. V této části je popsán i Niemeyerův matematický model pro výpočet elektrických parametrů částečných výbojů, jehož výsledky jsou porovnány s výsledky z měření v praktické části. Praktická část má za cíl popsat jednotlivé vzorky, v nichž se nachází dutinky o různých rozměrech, a po přiložení střídavého napětí změřit elektrické parametry částečných výbojů vyskytujících se v dutinkách. V závěrečné části jsou výsledky porovnány s předpoklady z Niemeyerova matematického modelu a popsány efekty projevující se na paternu částečných výbojů v závislosti na různých rozměrech dutinek ve vzorcích.

Klíčová slova

Částečné výboje, Niemeyerův model, zdánlivý náboj, způsoby měření částečných výbojů, rozvoj paternu

Annotation

This bachelor thesis deals with partial discharges with a focus on comparing the parameters of these discharges depending on the dimensions of the defect in the PET-G material. In the first part, the emphasis is placed on describing the problems, origin, and consequences of partial discharges. The second part is devoted to electric and non-electric methods of detecting partial discharges and modeling discharges in alternating electric fields. This part also describes Niemeyer's mathematical model for calculating the electrical parameters of partial discharges, which are compared with the results of measurements in the practical part. The practical part aims to describe individual samples. There are cavities of different dimensions, and after applying an alternating voltage to measure the electrical parameters of partial discharges occurring in the cavities. In the final part, the results are compared with the Niemeyer mathematical model's assumptions and described the effects on the pattern of partial discharges depending on the different dimensions of the samples' cavities.

Key words

Partial discharges, Niemeyer model, apparent charge, methods of measuring partial discharges, pattern development

Čestné prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne 5.1.2021

.....

Vojtěch Douda

Poděkování

V prvé řadě bych chtěl poděkovat mému vedoucímu bakalářské práce, panu Ing. Ondřeji Šeflovi za jeho rady, připomínky a ochotu, které mi pomohly při zpracování této práce. Děkuji také panu doc. Ing. Radku Procházkovi, Ph.D. za poskytnuté konzultace a panu Ing. Petru Veselému za poskytnutí laboratoře pro 3D tisk.

Obsah

SEZNAM OBRÁZKŮ	9
SEZNAM TABULEK	10
ÚVOD	11
SEZNAM SYMBOLŮ A ZNAČEK	13
1 ELEKTRICKÁ PEVNOST A ELEKTRICKÉ VÝBOJE	15
1.1 ELEKTRICKÉ VÝBOJE V PLYNECH	15
1.2 Rozdělení elektrických výbojů	16
1.3 TYPY ELEKTRICKÝCH PRŮRAZŮ V PEVNÝCH LÁTKÁCH	17
1.3.1 Průraz čistě tepelný	17
1.3.2 Průraz čistě elektrický	17
1.3.3 Průraz elektrochemický	17
2 ČÁSTEČNÉ VÝBOJE	18
2.1 Rozdělení částečných výbojů:	18
2.2 ZDROJE ČÁSTEČNÝCH VÝBOJŮ V PEVNÝCH MATERIÁLECH	18
2.3 DŮSLEDKY ČÁSTEČNÝCH VÝBOJŮ A JEJICH VLIV NA IZOLACI	19
2.3.1 Účinky výbojů v izolantu	19
2.4 TYPY ČÁSTEČNÝCH VÝBOJŮ VNITŘNÍCH A POVRCHOVÝCH	19
2.5 DEFINICE A PARAMETRY ČÁSTEČNÝCH VÝBOJŮ	20
2.5.1 Impulz částečného výboje	20
2.5.2 Zdánlivý náboj q impulzu částečného výboje	20
2.5.3 Cetnost impulzů n	21
2.5.4 Střední proud částečných výbojú I	21
2.5.5 Výkon částečných výbojů P	21
2.5.6 Souctovy naboj Q	21
	21
	21
3 MODELY PRO CHOVÁNÍ VÝBOJOVÉ ČINNOSTI VE STŘÍDAVÉM ELEKTRICK POLI	ÉМ 22
	
	22
	25
3.4 MATEMATICKÉ MODEL V POPISI LICÍ ČÁSTEČNÉ VÝBOJE V DI TINKÁCH	
3 4 1 Niemeverův matematický model	26
3.4.2 Pedersenův model	29
4 METODY DETEKCE ČÁSTEČNÝCH VÝBOJŮ	30
4.1 ΕΙ ΕΚΤΡΙCΚΕ ΜΕΤΟΩΥ ΡΡΟ ΜΕ̈́ΡΕΝΙ ČÁSTEČNÝCH VÝBO ΙΙ'Ι	30
4.2.1 Akustická detekce	
4.2.2 Optická detekce	33
4.2.3 Tepelná detekce	33
4.2.4 Chemická detekce	33
5 POPIS VZORKŮ A PRACOVIŠTĚ	34
	04
	34 25
	აວ

	5.3	KALIBRACE MĚŘÍCÍ SOUSTAVY	37
	5.4	RUŠENÍ A ŠUM	38
	5.5	IONIZACE VE VZORKU	39
	5.6	UKÁZKOVÝ VÝPOČET ZALOŽENÝ NA NIEMEYEROVA MODELU	40
6	ZHC	DDNOCENÍ VÝSLEDKŮ	43
	6.1	POROVNÁNÍ ROZVINUTÝCH PATERNŮ JEDNOTLIVÝCH VZORKŮ	43
	6.1.	1 Etapy rozvoje paternu	43
	6.1.	2 Porovnání rozvinutých paternů	44
	6.2	POROVNÁNÍ ZMĚŘENÝCH VÝSLEDKŮ S NIEYEMEROVÝM MODELEM	46
	6.2.	1 Odečet změřeného minimálního a maximálního zdánlivého náboje	46
	6.2.	2 Změřené zapalovací a zhášecí napětí	47
	6.2.	3 Porovnání výsledků	48
	6.3	VIZUÁLNÍ POROVNÁNÍ STĚN DUTINKY	49
7	ZÁ۱	/ĚR	50
8	BIB	LIOGRAFIE	52

Seznam obrázků

SEZNAM TABULEK 10 ÚVOD 11 SEZNAM SYMBOLŮ A ZNAČEK 13 OBRÁZEK 1 - ROZDĚLENÍ ELEKTRICKÝCH VÝBOJŮ [2] 16 OBRÁZEK 2 - TYPY ČÁSTEČNÝCH VÝBOJŮ VNITŘNÍCH A POVRCHOVÝCH [4] 20 OBRÁZEK 3 - VZNIK PROSTOROVÉHO NÁBOJE V NEHOMOGENNÍM DIELEKTRIKU 22 OBRÁZEK 4 - GEMANT-PHILIPPOVŮV MODEL [9] 23 ORPÁZEK 5 ČASOVÉ DRŮRĚHY NADĚTÍ A PROUDUL [10] 24
ÚVOD
SEZNAM SYMBOLŮ A ZNAČEK
OBRÁZEK 1 - ROZDĚLENÍ ELEKTRICKÝCH VÝBOJŮ [2]
OBRÁZEK 2 - TYPY ČÁSTEČNÝCH VÝBOJŮ VNITŘNÍCH A POVRCHOVÝCH [4]
OBRÁZEK 3 - VZNIK PROSTOROVÉHO NÁBOJE V NEHOMOGENNÍM DIELEKTRIKU
OBRÁZEK 4 - GEMANT-PHILIPPOVŮV MODEL [9]
OBRAZER J - CASOVE PROBENT NAFETTA PROODO [10]24
OBRÁZEK 6 - BÖNINGŮV MODEL [10]25
OBRÁZEK 7 - ČASOVÝ PRŮBĚH NAPĚTÍ A PROUDU ČÁSTEČNÝCH VÝBOJŮ [4]25
OBRÁZEK 8 - STANOVENÍ K FAKTORU [13]27
Obrázek 9 - Proudový impulz částečného výboje [10]30
OBRÁZEK 10 - ZAPOJENÍ S VAZEBNÍ KONDENZÁTOREM A MĚŘÍCÍ IMPEDANCÍ V SÉRII [5]31
OBRÁZEK 11 - ZAPOJENÍ S MĚŘÍCÍM OBJEKTEM A MĚŘÍCÍ IMPEDANCÍ V SÉRII [5]32
OBRÁZEK 12 - MŮSTKOVÉ ZAPOJENÍ PRO MĚŘENÍ ČÁSTEČNÝCH VÝBOJŮ [5]32
OBRÁZEK 13 - ZAPOJENÍ PRACOVIŠTĚ
OBRÁZEK 14 - FOTOGRAFIE PRACOVIŠTĚ
Obrázek 15 – Průřez vzorku 01
OBRÁZEK 16 - NÁDOBA SE VZORKEM NAPLNĚNÁ TRANSFORMÁTOROVÝM OLEJEM
OBRÁZEK 17 - KALIBRACE OBVODU [10]
OBRÁZEK 18 - ŠUM GENEROVANÝ ZESILOVAČEM NAPĚTÍ
Obrázek 19 - Průřez vzorku 1142
OBRÁZEK 20 - PRŮŘEZ VZORKU 1342
OBRÁZEK 21 - ROZVOJ PATERNU ČÁSTEČNÉHO VÝBOJE (1)43
OBRÁZEK 22 - ROZVOJ PATERNU ČÁSTEČNÉHO VÝBOJE (2)44
OBRÁZEK 23 - ROZVINUTÝ PATERN ČÁSTEČNÉHO VÝBOJE VZORKU 144
OBRÁZEK 24 - ROZVINUTÝ PATERN ČV VZORKU 145
OBRÁZEK 25 - ROZVINUTÝ PATERN ČV VZORKU 1145
OBRÁZEK 26 - VÝSLEDEK MĚŘENÍ DUTINKY VE VZORKU 146
OBRÁZEK 27 - VÝSLEDEK MĚŘENÍ DUTINKY VZORKU 1146
OBRÁZEK 28 - ZMĚŘENÝ PATERN ČÁSTEČNÝCH VÝBOJŮ VZORKU 1347
OBRÁZEK 29 – ZAPALOVACÍ A ZHÁŠECÍ NAPĚTÍ VZORKU 147
OBRÁZEK 30 - ZAPALOVACÍ A ZHÁŠECÍ NAPĚTÍ VZORKU 1147
OBRÁZEK 31 - PRŮŘEZ VZORKEM 1149
Obrázek 32 – Průřez vzorkem 1349

Seznam tabulek

TABULKA 1 - POROVNÁNÍ DIELEKTRICKÝCH PARAMETRŮ ZÁKLADNÍCH MATERIÁLŮ [1]	15
TABULKA 2 - RELEVANTNÍ PARAMETRY STREAMERŮ PRO VYBRANÁ ROZHRANÍ [12]	26
TABULKA 3 - ROZMĚROVÉ PARAMETRY VZORKŮ	36
TABULKA 4 - VÝSLEDKY ZAPALOVACÍHO A ZHÁŠECÍHO NAPĚTÍ	48
TABULKA 5 - POROVNÁNÍ ZMĚŘENÝCH A VYPOČTENÝCH VÝSLEDKŮ	48

Úvod

S rostoucím instalovaným výkonem strojů a elektrických zařízení roste i důraz na jejich bezporuchovost a bezproblémový chod s minimem údržeb a odstávek systému. Každá odstávka nebo havárie má nepříznivý dopad na energetické i finanční ztráty. Proto je nutné dbát na kvalitu a spolehlivost vyrobených elektrických zařízení, aby se minimalizovaly náklady spojené s odstávkami systému. Pravidelná údržba, diagnostika a správné řízení systému může zamezit výskytu havárií, ale i přes správné zacházení se zařízeními, ať už při výrobě zařízení, převozu nebo nesprávnou manipulací, problémy vznikají.

Na izolační systémy jsou hlavně kvůli bezproblémovému chodu zařízení a bezpečnosti obsluhy kladeny značné nároky na spolehlivost a kvalitu. Při výrobě izolace mohou díky sekundárním chemickým reakcím vznikat v materiálu drobné dutinky, které materiál značně znehodnocují. Tyto defekty izolačních systémů mohou být také způsobeny trhlinami a prasklinami z pnutí, ohybu nebo vibracemi při převozu zařízení. V těchto defektech se po aplikaci vysokého napětí nachází silnější elektrické pole než v okolním izolačním materiálu. Tyto defekty jsou z většiny případů tvořeny mikroskopickými dutinami naplněnými plynem nebo látkou o rozdílné permitivitě od okolního materiálu. Za určitých okolností mohou v těchto defektech vznikat drobné výboje. Tyto výboje nepřemosťují dráhu mezi elektrodami v celé délce, ale jen v místech, kde je elektrické pole nejsilnější. Přesuny nábojů a jejich časté opakování způsobuje erozi stěn dutinky a dochází k degradaci izolačního dielektrika, jenž může dojít až k rozložení dielektrika mezi elektrodami v celé jeho tloušťce.

Diagnostika se provádí podle normy ČSN EN 60270 u vysokonapěťových přístrojů a soustav. Zkoušky detekce částečných výbojů probíhají na cívkách nebo průchodkách třífázových nebo jednofázových transformátorů. Dalšími přístroji, na kterých se provádí detekce jsou točivé stroje, vysokonapěťové vypínače nebo také kabely, u kterých lze detekovat defekt až na přesnost jednoho centimetru. Dle uzemnění zkoušeného objektu je třeba zvolit správné zapojení zkušebního obvodu, které také závisí na prostředí provádění zkoušky. V provozovnách, kde se z důvodu zhoršené manipulace se zařízením musí provádět zkouška přímo v místě provozu, by zastavení provozu mohlo mít za následek značné finanční a energetické ztráty. I z tohoto důvodu je důležité využívat pro přenos dat koaxiální nebo optické kabely, aby se předešlo zkreslení výsledků měření vlivem okolního šumu a rušení.

Studie částečných výbojů v dielektrických systémech je dnes považována za jeden z nejhlavnějších parametrů hodnocení kvality izolačních systémů.

11

V následujícím textu budou probrány příčiny a podmínky vzniku částečného výboje, jeho druhy a způsoby detekce. Bude zmíněn, popsán a pro konkrétní parametry vzorků spočten Niemeyerův matematický model vytvořený v devadesátých letech minulého století pro určení elektrických parametrů částečných výbojů v závislosti na rozměrech defektu. V experimentální části budou porovnány výsledky z matematického modelu a vlivy rozměrů dutinek na výbojovou činnost částečných výbojů z hlediska velikosti přenesených nábojů, zapalovacího napětí a výskytu zvláštních efektů, které se v této oblasti projevují.

Seznam symbolů a značek

(E/p) _{cr}	kritické elektrické pole vzhledem k tlaku plynu v dutině	[V·Pa ⁻¹ · m ⁻¹]
$\overrightarrow{\nabla}\lambda_0$	gradient skalárního pole v místě spojení místa s elektrodou	[-]
ΔE	změna elektrického pole uvnitř defektu	[V· m⁻¹]
ΔU_{PD}	úbytek elektrického napětí vlivem výboje	[V]
а	délka poloosy ve směru z	[m]
А	parametr pro výpočet E _{inc}	[-]
В	parametr pro streamer	[Pa ^{1/β} ·m ^{1/β}]
b	délka poloosy ve směru x	[m]
С	délka poloosy ve směru y	[m]
С	parametr pro aproximační koeficient	$[Pa^{\beta-1} \cdot m^{\beta-1} \cdot V^{-\beta}]$
C ₀	kapacita pro určení náboje	[C]
C ₁	znázornění kapacity v obrázku	[F]
C ₂	znázornění kapacity v obrázku	(F)
C ₃	znázornění kapacity v obrázku	(F)
C 4	znázornění kapacity v obrázku	(F)
Ca	kapacita měřeného vzorku	IF]
CD	vazební zařízení	-
C _W	kapacita vazebního kondenzátoru	(F)
d	výška vzorku	[m]
d ₁	šířka materiálu při složeném dielektriku	[m]
d ₂	šířka materiálu při složeném dielektriku	[m]
e ⁻	elektron	-
Eo	aplikovaná intenzita elektrického pole	[V· m⁻¹]
E _{ext}	zhášecí intenzita elektrického pole	[V]
Ei	energie potřebná k uvolnění elektronu z atomu	[J]
Einc	zapalovací intenzita elektrického pole	[V· m⁻¹]
Ep	elektrická pevnost	[V· m⁻¹]
f	činitel charakterizující zesílení pole uvnitř dutinky	[-]
F	funkce vložena do funkce pro zapalovací napětí	[-]
g	geometrický faktor pro skutečný náboj	[-]
g'	geometrický faktor pro zdánlivý náboj	[-]
h	výška vzorku	[m]
1	výška defektu	[m]
K	konstanta závisející na rozměrech dutinky	[-]
K _{cr}	logaritmus elektronového čísla v lavině	[-]
KJ	kulové jiskříště	-
K _P	konstanta zavisejici na rozmerech dutinky	[-]
	stredni proud castecných vyboju	[A]
	IONT Ide de é ient	-
	kiauriy ioni hmothoat olektronu	- [ka]
111 _e N/1		[k9]
		-
11 Ø	oeunosi impuizu průměr	[-]
		-
U 3	UZUII	-

р	tlak plynu uvnitř dutinky	[Pa]
P	výkon částečných výbojů	[W]
PET-G	polyetyléntereftalát-glykol	-
Q	součtový náboj	[C]
q	zdánlivý náboj	[C]
q'	zdánlivý náboj	[C]
q´ _{max}	maximální zdánlivý přenesený náboj	[C]
q´ _{min}	minimální zdánlivý přenesený náboj	[C]
q _{max}	maximální skutečný přenesený náboj	[C]
q _{min}	minimální skutečný přenesený náboj	[C]
Q _{peak}	hodnota maximálního náboje	[C]
tgδ	ztrátový činitel	[-]
Tr	transformátor	-
T _{ref}	referenční perioda	[s]
U	napětí	[V]
U ₀	aplikované napětí	[V]
U_0^{inc}	aplikované zapalovací napětí	[V]
U _e	zhášející napětí částečných výbojů	[V]
Ui	počáteční napětí částečných výbojů	[V]
Up	Zapalovací napětí	[V]
V	rychlost	[m⋅ s⁻¹]
Z	impedance	[Ω]
Zm	měřící impedance	[Ω]
β	exponent pro ionizační koeficient	[-]
γ	poměr pole streameru ke kritickému poli	[-]
ε ₀	permitivita vakua	[F⋅ m⁻¹]
٤ _r	relativní permitivita	[-]
ε _{r1}	relativní permitivita materiálu při složeném dielektriku	[-]
ε _{r2}	relativní permitivita materiálu při složeném dielektriku	[-]
ε _{rG}	relativní permitivita plynu v defektu	[-]
π	Ludolfovo číslo	-
U	poměr aplikovaného napětí ku počátečnímu	[-]
Ω	objem dutinky	[m³]

1 Elektrická pevnost a elektrické výboje

Elektrická pevnost *Ep* je definována jako maximální intenzita elektrického pole, při které ještě nedochází k průrazu případně k přeskoku dielektrika.

Nachází-li se mezi elektrodami dostatečně silné elektrické pole a volný elektron, dostává polem urychlený elektron takovou kinetickou energii, kterou při interakcích s ostatními atomy dokáže z atomu vyrazit elektron a vzniká tak pár elektron – díra. Nově uvolněný elektron je také dále urychlován elektrickým polem a interaguje s dalšími atomy a vzniká nárazová ionizace. Dielektrikem se vytvoří vodivý kanálek a dojde k výboji – průrazu dielektrika. Podle samoregenerační schopnosti materiálu můžeme elektrické výboje rozdělit na elektrické průrazy, typické u pevných a kapalných látek a na elektrické přeskoky, typické u látek plynných.

Hodnota elektrické pevnosti není vždy u shodných konfigurací vzorků materiálů stejná a záleží na teplotě, vlhkosti nebo na době přiloženého napětí na materiálu.

Elektrická pevnost se udává v kilovoltech na milimetr [V/m], tedy jako podíl napětí *Up*, při kterém ještě nedochází k průrazu ku jednotce vzdálenosti *d* elektrod.

1.1 Elektrické výboje v plynech

Plynné látky jsou velmi dobrými dielektriky z hlediska ztrát a frekvenční nezávislosti. V porovnání s kapalnými nebo s pevnými látkami mají ovšem výrazně nižší elektrickou pevnost silněji závisející i na teplotě a tlaku plynu.

Materiál	<i>Ep</i> [kV/mm]	ε _r [-]	<i>tg</i> δ [-] (při 50 Hz)
PVC	30	3,5	1,50·10 ⁻²
Porcelán	30	6,0	0,17
Kalafuna	10 - 15	2,7-3,0	0,10 [.] 10 ⁻²
Transformátorový olej BTA	9,2	2,1	1,50·10 ⁻²
Vzduch	1 - 3	1,0	1,00 ⁻⁵

Tabulka 1 - porovnání dielektrických parametrů základních materiálů [1]

Elektrický přeskok plynných látek je způsoben nárazovou ionizací, při které je elektron za dostatečně velkého elektrického pole uvolněn z atomu. Z původně neutrálního atomu se nyní stává atom s kladným nábojem, neboli kladný iont.

$$M + e^- \to M^+ + 2e^- \tag{1}$$

Uvolněný a polem zrychlený elektron naráží do ostatních atomů a iontů a vyráží z nich další elektrony, vzniká tedy spolu s kladnými ionty elektronová lavina. K uvolnění elektronu z atomu dojde tehdy, jeli energie pohybující se volné částice (závislá na její rychlosti) větší jak energie *E*_i potřebná k uvolnění elektronu z atomu. [2]

$$\frac{1}{2}m_e v^2 > E_i \tag{2}$$

1.2 Rozdělení elektrických výbojů

Elektrické výboje se podle podmínky vzniku dělí na výboje samostatné a nesamostatné. Nesamostatné výboje potřebují ke svému vzniku a existenci ionizátor (zdroj energie potřebné k oddělení elektronů a kladných iontů). Proudy těchto výbojů se pohybují v řádech $10^{-10} \div 10^{-5}$ A. Zvyšováním elektrického pole dochází k nárůstu proudu až do oblasti nasyceného proudu, jak je vidět v levé části obrázku 1. Při dalším zvyšování napětí začínají převažovat Townsendovy ionizační procesy a výboj se stává samostatným. Výboje vznikající v této oblasti, nedoprovázené viditelným zářením a produkující akustické jevy, se nazývají temnými výboji. [3]

Obrázek 1 - Rozdělení elektrických výbojů [2]

Při dalším zvyšováním napětí se na ostrých hranách elektrod nebo elektrod s malým průměrem, kde je elektrické pole nehomogenní, začínají objevovat za atmosférického tlaku korónové výboje. Na rozdíl od temných výbojů s akustickou produkcí vyzařují i viditelné záření.

Po dosažení zapalovací hodnoty napětí doutnavého výboje a za sníženého tlaku pracovního plynu dochází ke srážkové ionizaci. Proudy doutnavých výbojů dosahují hodnot 10⁻⁴ ÷ 10⁻¹ A. Doutnavé výboje se využívají ve výbojkách nebo zářivkách.

Při proudech v řádech ampérů a silném elektrickém poli se zapalují jiskrové výboje. Jiskrové výboje vytvoří vodivý kanál s vysokou vodivostí a propojí obě elektrody a snižují napětí mezi

nimi. S rostoucí energií zdroje prudce roste proud procházející kanálem a výboj se mění na obloukový. [2] [3]

1.3 Typy elektrických průrazů v pevných látkách

1.3.1 Průraz čistě tepelný

Tepelný průraz vzniká u dielektrických polárních materiálů vývinem tepla a následného nárůstu teploty až do okamžiku přerušení materiálu. Teplo vzniká po přiložení střídavého elektrického pole, vlivem dielektrických a vodivostních ztrát, jehož nárůst dále podporuje zvyšování vodivosti a ztrátového činitele. S rostoucí tloušťkou materiálu roste pravděpodobnost vzniku tepelného průrazu, vlivem ztíženého odvodu tepla z materiálu.

1.3.2 Průraz čistě elektrický

Elektrický průraz vzniká u dielektrických materiálů po přiložení silného elektrického pole interakcí elektronů vyskytujících se v materiálu. Nárazová ionizace vede k vytvoření lavinového efektu růstu volných elektronů.

1.3.3 Průraz elektrochemický

Elektrochemický průraz je způsoben degradací izolačního materiálu vlivem výbojových činností v oblastech s nižší relativní permitivitou. Při takovýchto výbojích jsou stěny materiálu s vyšší permitivitou bombardovány elektrony a ionty, které mohou zapříčinit erozi stěn materiálu, anebo vznik agresivních plynů rozkládajících izolační materiál.

2 Částečné výboje

Částečné výboje jsou lokalizované elektrické výboje, které částečně překlenují vzdálenost mezi elektrodami s dostatečně velkým rozdílem potenciálů, v případě, že se mezi elektrodami nachází dielektrický materiál.

U nehomogenních dielektrických materiálů jsou příčinou vzniku těchto výbojů lokální zvýšení intenzity elektrického pole v izolaci nebo na povrchu izolace, nad hranici elektrické pevnosti materiálu v místech s nižší relativní permitivitou. Vzorec pro výpočet lokální intenzity elektrického pole pro složené dielektrikum:

$$E_1 = \frac{U}{\varepsilon_{r1} \cdot \left(\frac{d_1}{\varepsilon_{r1}} + \frac{d_2}{\varepsilon_{r2}}\right)} \tag{3}$$

Tyto elektrické výboje se v praxi objevují například v důsledku dutin naplněných plynem uzavřených v nehomogenních materiálech vzniklých při výrobě či při mechanických pnutí. U částečného výboje tedy nedochází k přeskoku dielektrika v celé tloušťce dielektrického materiálu, ale pouze v jeho části, kde je elektrické namáhání nejvyšší. Pulzy částečného výboje mívají malou energii, a proto způsobují jen malý pokles napětí. Roste-li dále vnější napětí, tento proces se může opakovat a mít za následek četné impulzy částečných výbojů během jednoho cyklu přiloženého napětí. Trvání těchto proudových (napěťových) impulsů je mnohem menší než 1 µs. Částečné výboje mohou být doprovázeny produkcí zvuků, vyzařováním světla a tepla a nebo chemickými reakcemi. [4] [5]

2.1 Rozdělení částečných výbojů:

- <u>Vnější</u> (externí) částečné výboje. Jsou to částečné výboje v plynech v okolí elektrod malých poloměrů nebo zakřivení, jako např. doutnavé výboje a korónové výboje.
- <u>Vnitřní</u> (interní) částečné výboje. Jsou to částečné výboje v plynech, obklopené pevným či kapalným dielektrikem, jako např. výboje v plynných dutinkách v pevném izolantu.
- <u>Povrchové</u> částečné výboje. Jsou to částečné výboje v okolí elektrod na rozhraní pevného a plynného izolantu, např. klouzavé, nebo drážkové výboje. [4]

2.2 Zdroje částečných výbojů v pevných materiálech

Vzhledem k vysoké elektrické pevnosti izolačních pevných materiálů, jsou částečné výboje v pevných látkách prakticky vždy způsobené vadami dielektrika. Tyto vady se skládají z dutin vyplněných plyny, které mají obecně nižší elektrickou pevnost než okolní materiál.

Vady převážně vznikají kvůli sekundárním chemickým reakcím při výrobě a nebo mohou být také způsobeny trhlinami a mezerami v dielektriku z mechanických pnutí, křehkostí, nedostatečnou přilnavostí, nebo nehomogenitou povrchu.

2.3 Důsledky částečných výbojů a jejich vliv na izolaci

Detekce částečných výbojů v dielektrických materiálech je důležitým kritériem pro hodnocení kvality izolace. Vnitřní částečné výboje nemají většinou vliv na krátkodobou elektrickou pevnost materiálu, jsou však škodlivé svým opakováním. Eroze způsobená částečnými výboji při střídavém napětí a opakovaných napěťových pulzech vede k drasticky zkrácené životnosti izolace až k průrazu izolace. Vnější částečné výboje vyskytující se na hranách elektrod v plynném izolantu destrukční vliv nemají. Degradace v tomto případě může být způsobena generováním ozonu, jenž je silné oxidační činidlo. V případě stejnosměrného napětí je výbojová frekvence snížena. Může ovšem docházet k přemístění náboje na rozhraních, nebo nabíjení povrchů korónovými výboji, a tak ke zkreslení pole a odleskům. [4] [6]

2.3.1 Účinky výbojů v izolantu

- <u>Elektro-erozní</u> Při vysokých hodnotách intenzity elektrického pole může v dutince vzniknout elektrický výboj a následně se vytvořit vodivá dráha. Zvýšená intenzita lokálního elektrického pole může v tomto místě způsobit čistě elektrický průraz. Vodivá dráha se pak postupně šíří izolantem až dojde k průrazu izolantu v celé jeho šířce. Další ničivé účinky mají ionty a elektrony bombardující stěnu dutinky, čímž je způsobena eroze stěny dutinky. Postupné zvětšování stěn dutinky způsobené erozí může způsobit průraz celého izolantu. [4]
- <u>Chemické</u> Nachází-li se v dutince kyslík, vzniklé výboje v dutince vytvářejí ozon, který má intenzivní oxidační účinky. Vzniklý ozon a oxidy dusíku mohou při vysokých teplotách vytvářet velmi agresivní kyselinu dusičnou. Chemickou destrukci izolantu mohou způsobovat i produkty rozkladu, které při vyšších teplotách difundují do pevného izolantu a vytvářejí oblasti s nižší elektrickou pevností. [4]
- <u>Tepelné</u> Opakovaným působením částečných výbojů se izolant otepluje, a tím i klesá úroveň napětí tepelného průrazu. [4]

2.4 Typy částečných výbojů vnitřních a povrchových

Podle elektrodového uspořádání můžeme částečné výboje rozdělit do několika druhů zobrazených na obrázku 2, kde číslem 1 a 2 jsou znázorněny elektrody a číslem 3 místo vzniku částečného výboje:

Obrázek 2 - Typy částečných výbojů vnitřních a povrchových [4]

V obrázku 2a, 2b, 2c, 2d jsou čtyři nejčastější typy příčin vzniku vnitřních částečných výbojů. Na obrázku 2a je pevný izolant nejčastěji s plynnou dutinkou. Dutinky mohou vznikat už při výrobě při, lití epoxidové izolace, nebo při exturzi polyetylenového izolantu. Na obrázcích 2b, 2c a 2d jsou vyobrazeny případy štěrbin vzniklých nerovností povrchu izolačního materiálu hned pod elektrodou a nebo delaminací v samotné izolaci vzniklých při mechanickém namáhání materiálu. Typický případ pro povrchové nerovnosti je odtržení izolace od elektrody. Obrázky 2e a 2f zobrazují typické případy pro vznik povrchových částečných výbojů, které se mohou objevovat na hranách elektrod, nebo rovnoběžně s povrchem na rozhraní elektroda-plyn-dielektrikum. Jde např. o klouzavé výboje. Obrázky 2g a 2h ukazují dva typy uspořádání ostrých elektrod v dielektriku pro vznik vnitřních výbojů. [4]

2.5 Definice a parametry částečných výbojů

Nezbytné parametry pro hodnocení výbojové činnosti v dielektrických materiálech, uvedené níže, jsou popsány v normě ČSN EN 60270. [5]

2.5.1 Impulz částečného výboje

Impulz částečného výboje je proudový nebo napěťový impulz, který vzniká jako následek vzniku částečného výboje ve zkoušeném zařízení.

2.5.2 Zdánlivý náboj q impulzu částečného výboje

Zdánlivý náboj q impulzu částečného výboje je takový náboj, který je injektován ve velmi krátkém čase mezi svorky zkoušeného objektu. Zdánlivý náboj se nerovná skutečnému náboji, působícího v místě výboje, jenž se přímo nedá změřit.

2.5.3 Četnost impulzů n

Četnost impulzů n částečných výbojů udává množství proudových impulzů zaznamenaných za měřený časový interval. Udává se v impulzech za sekundu.

2.5.4 Střední proud částečných výbojů /

Střední proud částečných impulzů představuje součet absolutních hodnot jednotlivých úrovní zdánlivých nábojů q během zvoleného referenčního časového intervalu T_{ref} děleno tímto intervalem. Střední proud částečného výboje se obvykle vyjadřuje v coulombech za sekundu [C/s] nebo ampérech [A].

$$I = \frac{1}{T_{ref}} \sum_{i=1}^{n} |q_i|$$
 (4)

2.5.5 Výkon částečných výbojů P

Výkon částečných výbojů udává střední výkon impulzu dodávaného na svorky zkoušeného objektu způsobený hodnotami zdánlivého výboje q_i během zvoleného referenčního časového intervalu T_{ref} .

$$P = \frac{1}{T_{ref}} \sum_{i=1}^{n} q_i u_i \tag{5}$$

Kde u_i jsou okamžité hodnoty zkušebního napětí v okamžicích výskytu jednotlivých úrovní zdánlivého náboje q_i a n počet výbojů v měřeném intervalu T_{ref} . Výkon se udává ve wattech [W].

2.5.6 Součtový náboj Q

Součtový náboj vyjadřuje součet absolutních hodnot jednotlivých úrovní během referenčního časového intervalu obvykle během jedné periody napájecího napětí. Udává se v jednotkách pikocoulombech [pC].

2.5.7 Počáteční napětí částečných výbojů U_i

Počáteční napětí částečných výbojů je napětí, při kterém jsou poprvé ve zkoušeném objektu pozorovány opakující se částečné výboje, je-li napětí postupně zvyšováno.

2.5.8 Zhášející napětí částečných výbojů U_e

Zhášející napětí částečných výbojů je napětí, při kterém ustává ve zkoušeném objektu opakující se výbojová činnost částečných výbojů, je-li přiložené napětí postupně snižováno. Udává se v jednotkách kilovoltech [kV].

3 Modely pro chování výbojové činnosti ve střídavém elektrickém poli

Během částečného výboje v dutině, dochází ke změnám elektrického pole, které jsou spojeny s přenosy náboje v dutině a na vnějších elektrodách. Kdykoliv dojde v dutině ke zvýšení intenzity elektrického pole nad kritickou hodnotu a je k dispozici volný elektron, který po urychlení polem na dostatečnou energii zapříčiní vznik lavinového efektu, dojde k dalšímu částečnému průrazu dielektrika s nižší permitivitou.

3.1 Procesy v nehomogenních materiálech

Polarizačních procesů v nehomogenních dielektrických materiálech se mohou účastnit jak nosiče vázané, tak i volné. V případě volných nosičů mluvíme o polarizaci migrační, polarizaci se vznikajícím prostorovým nábojem. Po přiložení elektrického pole se na nehomogenitách, na hranici dvou odlišných prostředí, na niž mají nosiče rozdílnou pohyblivost (PETG-vzduch), zachycují volné náboje (migrující) a vytváří tak místa se zvýšenou hustotou elektrického náboje, jak je vidět na obrázku 3. [7]

Obrázek 3 - Vznik prostorového náboje v nehomogenním dielektriku

Ve srovnání s ostatními mechanizmy polarizace (deformační, iontová, relaxační a další) je migrační nejpomalejší. Z tohoto důvodu můžeme říci, že vliv prostorového náboje je pozorován výhradně v nízkých až středních frekvencích ve vysokonapěťových zařízeních. Následkem výskytu prostorového náboje je znatelné zkreslení průběhu intenzity elektrického pole v dutině. Toto zkreslení se projevuje posilováním či zeslabováním intenzity elektrického pole. Následkem toho může dojít k elektrickému průrazu i v místech, kde nemá intenzita elektrického pole generována vnějším zdrojem největší hodnotu.

Ke vzniku prostorového náboje je zapotřebí volných nosičů náboje v objemu dielektrického materiálu, a především vstřikování nosičů náboje z přilehlých elektrod nebo vlivem částečných výbojů v nehomogenitách. [7]

Po výbojích v dutinách se může uplatňovat paměťový efekt vznikající přesunem náboje a zanechání tzv. otisku v podobě uvězněného náboje v okolí povrchu dutiny. Tyto otisky (uvězněné náboje) rovněž ovlivňují elektrické pole dutiny a tím i periodicitu výbojů v dutině. Výbojem dojde k přesunu náboje na stěny dutiny opačné polarity, uložení nábojů a ke vzniku nového lokálního elektrického pole, které po přesunu výsledné elektrické pole v dutině sníží. Příchodem opačné půlperiody aplikovaného elektrického pole se pole generované uloženým nábojem vektorově sečtou a může docházet k výbojům o různé velikosti a fázi k přiloženému napětí. [8]

3.2 Gemant-Philippův model

Pro představení chování výbojové činnosti ve zkoušeném objektu můžeme vyjít ze základního tříkapacitního obvodu neboli Gemant-Philippova modelu. Tento model vychází z existence nehomogenního dielektrika se vzduchovou dutinkou uvnitř pevného či kapalného dielektrika. Kapacita C_1 uvedená v obvodu představuje kapacitu vzduchové dutiny, ve které dochází ke vzniku částečných výbojů. Sériově zapojená kapacita C_2 s kapacitou C_1 představuje celkovou kapacitu homogenního dielektrika v sérii s dutinou. Kapacita C_3 je ke kapacitám C_1 a C_2 připojena paralelně, je v porovnání s kapacitou C_1 a C_2 relativně velká a představuje kapacitu okolního homogenního dielektrika kolem dutinky. Pro malou dutinu v porovnání s tloušťkou dielektrika pak platí podmínka $C_3 >> C_1 >> C_2$. [9]

Obrázek 4 - Gemant-Philippovův model [9]

Pokud při přiloženém střídavém napětí na měřený objekt nedojde k přeskoku v dutince (na obrázku značeno kulovým jiskřištěm "KJ"), bude napětí na kapacitě C_1 z náhradního schématu dáno vztahem:

$$u_1(t) = \frac{C_2}{C_1 + C_2} \cdot u(t)$$
(6)

V případě zvýšení napětí nad průrazné, dojde k výboji (přeskoku na KJ) a napětí u_1 (t) po dobu výboje bude dáno úbytkem napětí na odporu R, jež představuje odpor výbojové dráhy překlenující vnitřní vzduchovou dutinu. Po odeznění výboje, napětí na kapacitě C_1 roste se strmostí dle gradientu přiloženého napětí na vzorek.

Časový sinusový průběh přiloženého napětí u (t) na izolant a na dutince u_{10} (t) zobrazuje obrázek 5. Při dosažení průrazného napětí U_z na dutince, na obrázku 4a, dochází v dutince k přeskoku a zbytkové napětí v modelu po přeskoku je na dutince rovno nule. V praxi při výbojích je toto napětí rovno zhášecímu, což je takové napětí, při kterém se při snižování elektrického pole přestávají objevovat částečné výboje. Po odeznění výboje napětí opět na dutince kapacitně roste až do opětovného dosažení zapalovacího napětí. Tento cyklus se opakuje do doby, než sinusový průběh dosáhne své amplitudy. Četnost výbojů v dutince roste s velikostí přiloženého napětí, zapalovací napětí ovšem zůstává téměř stejné. Vlivem přeskoků se na kapacitní proud dielektrikem superponují proudové pulzy vzniklé částečnými výboji, jak je vidět na obrázku 5b. [10]

Obrázek 5 - Časové průběhy napětí a proudu [10]

3.3 Böningův model

Při částečném výboji se na výbojovém procesu nepodílí jen plochy dutinek, jak popisuje Gemant-Philippovův model, ale i část pevného okolí izolantu. Navíc Gemant-Philippův model nevysvětluje růst výbojové činnosti se zvyšujícím se napětí na měřeném objektu. [11] Výbojem v dutince dochází k odebrání náboje ze stěn dutinky i z pevného materiálu v blízkosti dutinky. Nosiče náboje se tak mohou pohybovat na rozhraní a ovlivňovat tak napětí na dutince. Pokles napětí se tedy objeví na dutince i na pevném rozhraní. Tento proces popisuje Böningův model zobrazený na obrázku 6. [10]

Obrázek 6 - Böningův model [10]

Böningův model se od Gemant-Philippova modelu liší o paralelně přidanou kapacitu C_4 ke kapacitě vzduchové dutinky C_1 , která představuje vliv okolí dutinky. Kapacita C_5 ve schématu modeluje část kapacity pevné části dielektrika. Před výbojovým procesem odporem R_4 , výbojové cesty stěnami dutinky a pevnou částí dielektrika, žádný proud neprochází, jelikož je na kapacitách C_4 a C_1 shodné napětí. Napětí u_1 (t) a u_4 (t) je před výbojem dáno vztahem:

$$u_1(t) = u_4(t) = \frac{C_2}{C_1 + C_2} \cdot u(t)$$
(7)

Obrázek 7 - Časový průběh napětí a proudu částečných výbojů [4]

3.4 Matematické modely popisující částečné výboje v dutinkách

Matematické modelování činnosti částečných výbojů spadá až do osmdesátých let dvacátého století. V následujícím textu bude probrán Niemeyerův model a zmíněn Pedersonův model jako ukázka.

3.4.1 Niemeyerův matematický model

Jedním z předních vědců zabývajících se zkoumáním a popisem částečných výbojů v izolačních systémech je Lutz Niemeyer. Již v devadesátých letech minulého století v době, kdy zkoumání částečných výbojů bylo na vzestupu, popsal výbojovou činnost částečných výbojů v matematickém modelu "*A Generalized Approach to Partial Discharge Modeling*" (*Lutz Niemeyer, 1995*) [12]. Tento model lze použít na libovolné vady izolace v rozhraních plyn – izolátor. Mnoho výzkumů, prací a článků se po celém světě na tento model, publikovaný v roce 1995, dodnes odkazuje a vychází z něj.

Výchozími parametry, které je nutno před zahájením výpočtu definovat jsou:

- a .. poloměr dutinky ve vertikální ose [m]
- *b* .. poloměr dutinky v horizontální ose [m]
- ε_r .. relativní permitivita materiálu tvořícího vzorek [-]
- U₀ .. aplikované napětí na zkoušený vzorek [V]
- *d* .. tloušťka vzorku [m]
- *p* .. tlak plynu uvnitř dutinky [Pa]

Dalšími parametry, které je nutné před výpočtem definovat, jsou parametry charakterizující ionizační procesy: $(E/p)_{cr}$ [V·Pa⁻¹·m⁻¹] značící elektrickou pevnost v závislosti na tlaku plynu v dutině, β exponent pro ionizační koeficient, *C* [Pa^{β-1}·m^{β-1}·V^{-β}] parametr pro aproximační koeficient, K_{cr} logaritmus elektronového čísla v lavině a γ jako bezrozměrný faktor závisející složení defektu a okolního materiálu a na polaritě výboje uvedené v tabulce 2 dostupné z Niemeyerova matematického modelu z článku [12].

gas	$(E/p)_{cr}$	β	C	Kcr	γ	
surface	V/Pa m		$Pa^{\beta-1}m^{\beta-1}V^{-\beta}$		+	-
air	25	2	4.15×10^{-4}	9	0.2	0.5
air/PVC	~ 25	~ 2	$\sim 4 imes 10^{-4}$	~ 9	~ 0.16	-
air/glass	~ 25	~ 2	$\sim 4 \times 10^{-4}$	~ 9	~ 0.15	-
SF_6	89	1	2.8×10^{-2}	10.5	1	1

Tabulka 2 - Relevantní parametry streamerů pro vybraná rozhraní [12]

V následujících výpočtech budou kvůli zjednodušení zobrazeny pouze vztahy přímo přispívající k výsledku. Dílčí vztahy, odvození a ostatní vztahy, jež nejsou předmětem této práce, jsou s uvedenými vztahy v této kapitole k dispozici ve výše zmíněném modelu.

Přenos náboje \pm q spojený s výbojovou činností lze získat integrací rozložení povrchového náboje σ , který je požadovaný ke způsobení přeskoku uvnitř dutinky. Změna elektrického pole v dutince je dána:

$$\Delta E = \frac{\Delta U_{PD}}{2a} \tag{8}$$

kde ΔU_{PD} je rozdíl počátečního napětí a zbytkového napětí. Přenesený náboj je pak dán rovnicí:

$$\pm q = \pi \cdot \varepsilon_0 \cdot b^2 \cdot [1 + \varepsilon_r \cdot (K - 1)] \cdot \Delta E$$
⁽⁹⁾

V případě, že bychom potřebovali přenesený náboj získat z parametrů *I* a ΔU_{PD} , lze rovnici zapsat takto:

$$q = \pm g \cdot \pi \cdot \varepsilon_0 \cdot l \cdot \Delta U_{PD} \tag{10}$$

Sloučením rovnic (8) (9) (10) a dosazením *K* faktoru, který je určený poměrem a/b dle obrázku 8 získáme následující vztah pro bezrozměrný geometrický faktor *g*:

Obrázek 8 - Stanovení K faktoru [13]

Bezrozměrný činitel f (12) závisející na poměru a/b charakterizuje zesílení pole uvnitř dutinky potřebný k vyjádření funkce F. Ta v závislosti na tlaku a vertikální délce dutinky uvězněné v dielektrickém materiálu lze zapsat vztahem (13), kde B a n získáme výpočtem z konstant dle tabulky 2:

$$f = \frac{K \cdot \varepsilon_r}{1 + (K - 1) \cdot \varepsilon_r}$$
(12)

$$F = \frac{1 + \frac{B}{(p \cdot l)^n}}{f} \tag{13}$$

$$B = \frac{\left(\frac{\text{Kcr}}{\text{C}}\right)^n}{\left(\frac{E}{p}\right)_{cr}} \tag{14}$$

Efektivní hodnota zapalovacího napětí, neboli nejnižší napětí, při kterém se začínají generovat částečné výboje, se získá ze vztahu (16).

$$n = \frac{1}{\beta} \tag{15}$$

$$U_0^{inc} = \frac{\left(\frac{E}{p}\right)_{cr} \cdot p \cdot F}{\frac{E_0}{U_0}}$$
(16)

Je-li napětí na dutince alespoň tak velké jako je její zapalovací napětí, lze minimální velikost přeneseného náboje v dutině matematicky stanovit dle následující rovnice (17). Ze vzorce je vidět nezávislost minimální hodnoty přeneseného částečného výboje na napětí na dutince.

$$q_{min} = \pi \cdot \varepsilon_0 \cdot g \cdot \left(\frac{E}{p}\right)_{cr} \cdot p \cdot l^2 \cdot \left(1 - \gamma + \frac{B}{(p \cdot l)^n}\right)$$
(17)

Maximální přenesený náboj dutině je Niemeyerovou prací stanoven takto:

$$q_{max} = \frac{2 \cdot (U_0 / U_0^{inc} - \gamma / [1 + B \cdot (p \cdot l)^n]) \cdot q_{min}}{1 - \gamma / [1 + B \cdot (p \cdot l)^n]}$$

$$\approx 2 \cdot \left(\frac{U_0}{U_0^{inc}}\right) \cdot q_{min} \approx 2v \cdot q_{min}$$
(18)

kde *v* je poměr aplikovaného napětí k zapalovacímu napětí neboli poměr přepětí. Toto je ale pouze skutečný náboj přenesený v dutince, nikoliv zdánlivý náboj zahrnující i přenos nábojů v materiálu obklopující dutinu. Abychom byli schopni porovnat výsledky s výsledky z experimentálního měření je tedy potřeba získat hodnoty přenesených zdánlivých nábojů. Nově bude geometrický faktor g´ tvaru:

$$g' = \frac{4}{3} \cdot \frac{\varepsilon_{\rm r} \cdot {\rm K}}{1 + \varepsilon_{\rm r} \cdot ({\rm K} - 1)} \cdot \frac{a}{l}$$
(19)

který dosadíme do rovnice pro minimální zdánlivý náboj q^{min}.

$$q'_{min} = \frac{3}{8} \cdot \pi \cdot \varepsilon_0 \cdot (2 \cdot \varepsilon_r + 1) \cdot \left(\frac{E}{p}\right)_{cr} \cdot p \cdot \left(1 - \gamma + \frac{F}{f}\right)$$

$$\cdot l^3 \cdot \frac{E_0}{U_0} \cdot g'$$
(20)

Pro získání přibližné hodnoty maximálního přeneseného zdánlivého náboje je potřeba rovnici q'_{min} vynásobit 2v.

$$q'_{max} \approx q'_{min} \cdot 2\upsilon \tag{21}$$

3.4.2 Pedersenův model

Koncept A. Pedersena pro znázornění činnosti částečných výbojů v defektech elipsoidických tvarů je založen na činnosti indukovaných nábojů v dutinách popsaný jako rozdíl mezi nabitou elektrodou před a po výboji v dutině. Výbojovou činnost způsobuje zvyšující se hustota povrchového náboje na stěnách dutiny. Při snížení elektrického pole pod určitou hodnotu se mění hustota prostorového náboje a indukované výboje tak ustávají. V modelu je zahrnut předpoklad, že do výboje je zapojen celý objem dutinky. Vztah mezi vnějším elektrickým polem a zapalovacím elektrickým polem v dutince je dán následujícím vztahem.

$$E_0 = \left[1 + \frac{a \cdot b \cdot c \cdot A \cdot (\varepsilon_{\rm rG} - \varepsilon_{\rm r})}{2 \cdot \varepsilon_{\rm r}} \cdot E_{inc}\right]$$
(22)

Kde *a*, *b*, *c* jsou rozměry elipsoidu, ε_{rG} relativní permitivita plynu v defektu, *A* parametr daný výsledkem integrálu daného rozměry dutinky.

Náboj přemisťující se v dutince je pak dán vztahem:

$$q = -K_P \cdot \Omega \cdot \varepsilon_r \cdot (E_{inc} - E_{ext}) \cdot \vec{\nabla} \lambda_0$$
⁽²³⁾

$$K_P = \frac{2}{a \cdot b \cdot c \cdot A} \tag{24}$$

(00)

kde *K* je bezrozměrná konstanta závisející na rozměrech dutinky, Ω je objem dutinky, $E_{inc} - E_{ext}$ je rozdíl mezi počáteční intenzitou elektrického pole, při které vznikají výboje a hodnotou, kdy výboje ustávají a λ_0 výsledek Laplaceovy rovnice v místě dutinky. [13]

4 Metody detekce částečných výbojů

Výbojová činnost v izolantu je doprovázena celou řadou fyzikálních jevů elektrického i neelektrického charakteru. Vedle proudových pulzů lze činnost výbojů detekovat díky vzniku chemických zplodin, elektromagnetického záření, akustických vln nebo díky tepelnému ohřevu.

Metody detekce a měření částečných výbojů se dají rozdělit do dvou skupin. První skupina globální se zabývá měřením částečných výbojů v izolaci celého zařízení. Udává nám tedy informace o celkovém stavu izolace, zatímco druhá metoda, lokalizační, se zaměřuje přímo na vyhledávání lokality výskytu částečných výbojů. Tyto dvě metody se navzájem doplňují, kdy globálním měřením zjistíme celkovou míru výbojové činnosti a posléze druhou metodou přesné místo jejich výskytu. [10]

4.1 Elektrické metody pro měření částečných výbojů

Elektrické metody pro měření částečných výbojů jsou založeny na zaznamenání proudových pulzů vzniklých jako následek částečných výbojů. Tvar proudového impulzu částečných výbojů v pevných materiálech má tvar na obrázku 6. Doba čela T_1 neboli doba od začátku pulzu do jeho amplitudy mívá dobu v řádech několik ns a dobu půltýlu, tj. dobu poklesu z maxima na polovinu, v řádech desítek ns. Velikost náboje tohoto proudového pulzu je dána integrací plochy pod křivkou.

Obrázek 9 - Proudový impulz částečného výboje [10]

Zapojení obvodu pro detekci částečných výbojů v zařízeních se odvíjí od místa měření a od způsobu uzemnění měřeného zařízení. V případě pevně uzemněného zařízení a v místě, kde je hladina okolního rušení a šumu nízká, se používá zapojení s vazebním kondenzátorem C_k zapojeného v sérii s měřící impedancí Z_m dle obrázku 10. Obvod umožňuje snímat poklesy napětí na měřící impedanci Z_m způsobené výboji v měřeném objektu. Zapojení se skládá ze zdroje vysokého napětí U, na který jsou kladeny důrazy na nízkou hladinu šumu a minimální hladinou částečných výbojů. Případný šum pozadí nebo rušení ze zdroje, které může snižovat přesnost a požadovanou citlivost měření, sníží na dostatečnou úroveň v zapojení filtr nebo impedance Z. Dalším prvkem je zkoušený objekt C_a a k němu paralelně zapojená měřící impedance Z_m a vazební kondenzátor C_k , jenž musí taktéž splňovat podmínky pro minimální výskyt částečných výbojů při požadovaném napětí. Vazební kondenzátor by měl mít co největší kapacitu, aby jeho reaktance nezeslabovala vysokofrekvenční pulzy částečných výbojů, které se detekují v šířce pásma od 100 kHz do 32 MHz. Napěťové pulzy se po zpracovaní ve vazebním zařízení CD a průchodu koaxiálním nebo optickým kabelem zpracovávají v měřícím zařízení MI. [5] [10]

Obrázek 10 - Zapojení s vazební kondenzátorem a měřící impedancí v sérii [5]

Prvé schéma se používá především při měření uzemněných objektů, nebo objektů o velkých kapacitách. Schéma na obrázku 11, kdy měřený objekt je v sérii s měřící impedancí, umožňuje měřit i neuzemněné objekty snímáním proudových pulzů částečných výbojů. Pulzy vzniklé částečnými výboji se dostávají na impedanci Z_m , kde vytváří úbytek napětí snímaný vazebním zařízením a opět přenášený spojovacím kabelem k měřícímu zařízení. V případě měření malých objektů, kdy bývá rozptylová kapacita obvodu k zemi větší jak rozptylová kapacita měřeného objektu, může být vazební kapacita z obvodu vynechána. [10]

Obrázek 11 - Zapojení s měřícím objektem a měřící impedancí v sérii [5]

Pro měření částečných výbojů za provozních podmínek v místě instalace je pro svou schopnost potlačení okolního rušení výhodné využít zapojení měřícího obvodu dle obrázku 12. Můstkové zapojení snímá rozdílové proudové pulzy na měřících impedancích, jejichž velikost lze nastavit. Na pozici vazebního kondenzátoru lze použít zvláštní kondenzátor s kapacitou blízkou k měřícímu objektu, anebo druhý objekt se známou hladinou částečných výbojů. [5]

Obrázek 12 - Můstkové zapojení pro měření částečných výbojů [5]

4.2 Neelektrické metody pro měření částečných výbojů

Neelektrické metody pro měření částečných výbojů se využívají tam, kde není přímé elektrické měření možné z důvodů elektromagmnetického rušení. Metody jsou založeny na snímaní neelektrickcýh veličin jako jsou: světelné záření, akustická produkce, tepelný ohřev, nebo vznik chemických zplodin. Měření těchto veličin vyžaduje speciální měřící přístroje například fotonásobiče, přístroje pro noční vidění, termovize nebo směrové

mikrofony v různých pásmech frekvencí. Využívají se pro měření povrchových, plazivých, nebo korónových částečných výbojů.

4.2.1 Akustická detekce

Vznik částečných výbojů je doprovázen akustickou produkcí, kterou zachycují speciální směrové selektivní mikrofony s vysokou citlivostí. Důležitou podmínkou pro toto měření ve slyšitelném pásmu je dokonale tiché prostředí v okolí měření. Tuto podmínku mnohdy nelze v provozovnách zaručit, proto měření převážně probíhají v ultrazvukovém pásmu, které je i pro částečné výboje charakteristické. Tato metoda se používá k lokalizaci míst se vznikem částečných výbojů.

4.2.2 Optická detekce

Optickou detekci můžeme rozdělit na vizuální a detekci v infračerveném, nebo ultrafialovém spektru. Vizuální detekce je založena na posouzení částečných výbojů samotným okem. Snímání probíhá ve tmavé místnosti citlivými kamerami s dlouhou časovou expozicí. Snímky s částečnými výboji lze zvýraznit kamerovým záznamem se selektivními filtry v infračerveném, nebo ultrafialovém spektru. Takové snímky se dále kombinují se snímky z viditelného spektra a vzniká obraz částečného výboje na viditelném pozadí. Výbojovou činnost lze také detekovat pod ultrafialovým světlem, kde jsou vidět stopy poškození materiálu zanechané výboji.

4.2.3 Tepelná detekce

Tepelná detekce snímá rozložení teploty kamerami s termovizí a lokalizuje místa s vyššími teplotami jako důsledky výskytu částečných výbojů.

4.2.4 Chemická detekce

Elektrické stroje bývají často izolovány buď plynem nebo olejem. Výskytem částečných výbojů vznikají chemickými reakcemi produkty, jejichž koncentrace v izolantu je měřena. V plynných látkách (ve vzduchu) se identifikuje množství ozonu O₃, v olejích pak vodík, metan, etylen, acetylen a propylen. [4] [5]

5 Popis vzorků a pracoviště

5.1 Pracoviště pro měření částečných výbojů

Pracoviště pro měření chování částečných výbojů se nachází v hale vysokého napětí Fakulty elektrotechnické ČVUT v Praze. Tato hala je téměř dokonale odstíněna hliníkovými deskami od vnějšího šumu a rušení. Pracoviště je složeno z bezvýbojového transformátoru, u kterého byl po výrobě garantován minimální výskyt částečných výbojů až do hladiny výstupního napětí 120 kV. V současné době nebyl výskyt částečných výbojů v tomto transformátoru zaznamenán do hodnoty 40 kV. Napětí do vstupních svorek tohoto transformátoru generuje generátor KEITHLEY 3390 ARBITRARY GENERATOR zesílené zesilovačem LAB GRUPPEN FP 14000. Spínací procesy v zesilovači generují nechtěný šum, který bude probrán v následující kapitole. Výstup z transformátoru je vyveden bezvýbojovou trubicí o tvaru "husího krku", která zamezuje výskytu korónového výboje k elektrodě se vzorkem. Testování vzorků probíhá v nádobě naplněné transformátorovým olejem zobrazené na obrázku 16. Elektrodový systém se skládá z elektrody o průměru 8,5 mm umístěné ze spodní strany vzorku. Druhá elektroda je průměru 20 mm. K elektrodám se vzorkem je paralelně zapojen kapacitní dělič s vývodem do měřícího zařízení od firmy Omicron s impedancí zaznamenávající poklesy napětí vlivem výskytu částečných výbojů ve vzorku. Poklesy napětí společně s informací o napětí na vzorku jsou přeneseny optickým kabelem do řídící jednotky Omicron připojené k PC dle obrázku 13.

Obrázek 13 - Zapojení pracoviště

- Tr .. bezvýbojový transformátorm120 kV, ČKD Praha
- Z .. omezující impedance
- Ca .. měřený vzorek
- Ck ... kapacitní dělič + vazební kondenzátor Omicron 1 nF
- Zm .. měřící impedance Omicron

Obrázek 14 - Fotografie pracoviště

5.2 Popis vzorků

Vzorky s nehomogenitami byly navrhnuty v 3D grafickém programu DesignSpark Mechanical a poté vytisknuty na 3D tiskárně Original Prusa i3-MKS3 z materiálu Prusament PETG o relativní permitivitě při rozlišení tisku 50 μ m ε_r = 3,2. [14] Vzorky jsou tvaru zploštělého válce o rozměrech ϕ = 40 mm, h = 4 mm, dle průřezu vzorku 01 na obrázku 15. Dutinky mají tvary koule, elipsoidu postaveného vertikálně a elipsoidu postaveného horizontálně s konstantní výškou v ose z a proměnnou šířkou v osách x a y, dle tabulky 3 níže. Konstantní délka v ose z byla zachována z důvodu porovnání vlivů tvarů dutinek na výši zapalovacího napětí. Rozlišení tisku neboli výška jedné tisknuté vrstvy byla nastavena na 50 µm, aby se docílilo co nejhladšího povrchu stěn dutinky.

Obrázek 15 – Průřez vzorku 01

Označení vzorku	Výška dutinky [mm]	Šířka dutinky [mm]	Objem dutinky [mm ³]	
01	3	3	3,375	
11	3	6	13,5	
13	3	2	1,5	

Tabulka 3 - Rozměrové parametry vzorků

Nad a pod dutinkou ve vzorku se nachází vrstva o tloušťce 0,5 mm. Tato tloušťka by měla odolat přiloženému napětí tak, aby nedošlo k průrazu dielektrika – tiskového materiálu, případně vniknutí oleje a zaplavení dutiny olejem. Tloušťka vrstvy 0,5 mm nad a pod dutinkou u vzorku 13 v průběhu měření neodolala přiloženému napětí 22 kV a došlo k elektrickému průrazu dielektrika. Takto vysoké napětí bylo na vzorek přiloženo z důvodu snížení doby do stabilní ionizace dutinky, která se ani po 4 hodinách přiloženého napětí 19 kV nepodařila udržet. Pro následující měření vzorku 13 byl vytištěn nový vzorek.

Cesta po povrchu vzorku od jedné elektrody ke druhé je minimálně 30 mm. Tato vzdálenost by měla být dostatečná k zamezení výskytu povrchových výbojů na povrchu vzorku, kterému především také pomáhá transformátorový olej v nádobě se vzorkem. Při aplikování vzorku do oleje a zasazení na elektrodu musí být dán pozor, zda se vlivem ponoření vzorku do oleje nevytvořily na jeho povrchu vzduchové bublinky, jejichž výskytem by mohlo být měření značně ovlivněno.

Obrázek 16 - Nádoba se vzorkem naplněná transformátorovým olejem

5.3 Kalibrace měřící soustavy

Kalibrace měřící soustavy je jedna z nejdůležitějších činností vlastního měření částečných výbojů. Provádí se v kompletně zapojeném obvodu bez přiloženého napětí za účelem stanovení převodové konstanty mezi změřenou hodnotou a hodnotou, které by se změřená měla rovnat. Na cestě od svorek na měřeném objektu do vstupu vyhodnocovacího zařízení může docházet ke zkreslení signálu vlivem kapacit, anebo ke ztrátám vlivem ztrát na impedanci a výsledný zachycený pulz nemusí souhlasit se skutečným. Aby se tomuto zkreslení předešlo a výsledky byly co nejpřesnější, je nutné před každým měřením nového objektu soustavu správně zkalibrovat.

Kalibrátory jsou dvou druhů – elektronické a kalibrátory fungující na fyzikálním principu. Kalibrátory fungující na fyzikálním principu obsahují dutinu naplněnou plynem, ve které se generují částečné výboje, podobně jako v měřeném objektu. Elektronické kalibrátory generují impulzy pomocí derivačního kondenzátoru. Kalibrace by měla za účelem dobré přesnosti probíhat s řádově stejně velkými pulzy z kalibrátoru s jakými se očekávají výsledky měření. Proudové pulzy jsou v kalibrátoru generovány generátorem skokového napětí o amplitudě U₀ připojeného sériově ke kapacitě C₀. Kalibrační proudové impulzy jsou pak dány vztahem [5]:

Zapojení soustavy při kalibraci je zobrazeno na

Obrázek 17 - Kalibrace obvodu [10]

V našem případě měření výbojů v uvedených dutinkách jsou očekávány výboje v jednotkách nC, proto byly kalibrace provedeny na úroveň 1 nC.

Napěťová kalibrace se rovněž musí provést pro nově zapojenou konfiguraci měření. Provádí připojením osciloskopu na svorky napěťového děliče a rovněž stanovení převodové konstanty mezi změřenou hodnotou systémem a osciloskopem.

5.4 Rušení a šum

Další nezbytnou činností před samotným měřením je důležité zjistit hladinu okolního šumu, rušení, které by zasahovalo do naměřených hodnot a měření tak značně znehodnocovalo. Dle normy ČSN EN 60270 by hladina šumu pozadí měla být maximálně 50% předepsané přípustné úrovně částečných výbojů. Takovéto pozadí musí být zaznamenáno. Výrazné výchylky, u kterých s jistotou lze říci, že jsou způsobeny vnějším rušením, mohou být zanedbány.

Zdroje rušení se dělí na dvě skupiny. Do prvé patří rušení, které se na měřícím přístroji objevuje i když není zkušební obvod pod napětím. Zde může jít o rušení spínacími operacemi v blízkých zařízeních, vysokonapěťovými zkouškami v blízkosti, rozhlasovým vysíláním nebo o šum z vlastního měřícího přístroje.

V druhém případě jde o rušení, které se vyskytuje jen v případě, že je měřící obvod pod napětím. Zde jde o částečné výboje generující se v obvodu i na jiných místech než na zkoušeném objektu. Obvykle jde o transformátor, kde výboje vznikají mezi vinutími, anebo na průchodkách. Dále toto rušení vzniká na vodičích, nebo vlivem jiskření, korónového výboje, nebo nedokonale uzemněného objektu v okolí měřícího obvodu. [5]

Okolní šum pozadí zaznamenaný při měření částečných výbojů je vidět na obrázku 18. Šum se vyskytuje, i když není obvod pod napětím. Znamená to tedy, že jde o rušení prvého druhu a s největší pravděpodobností jde o šum generující spínací obvody v zesilovači napětí. Nejmenší přenesený náboj vlivem částečného výboje v dutince vzorku 1 byl 1,5 nC, proto šum dosahující maximálních hodnot 260 pC můžeme dle normy ČSN EN 60270 zanedbat.

Obrázek 18 - Šum generovaný zesilovačem napětí

5.5 lonizace ve vzorku

Jak bylo popsáno výše, ke spuštění ionizačního lavinového efektu v dutině je zapotřebí přiložení dostatečně velkého aplikovaného napětí na vzorek a přítomnost volné částice, která se polem urychlí a následně spustí ionizační proces. Nenachází-li se v defektu žádný volný elektron, je zapotřebí počkat na kosmické gama záření, které prolétne dutinkou a za dostatečně velkého přiloženého napětí tak nastartuje ionizační proces. Tato doba od přiložení vnějšího napětí po rozvoj částečných výbojů není tedy konstantní. Vysokonapěťová laboratoř, kde bylo toto měření prováděno, je odrušena od vnějšího záření, proto se doba k prvním výskytům částečných výbojů na vzorku pohybovala průměrně kolem 30 až 60 minut. Tuto dobu trvání lze znatelně zkrátit zvýšením aplikovaného napětí na vzorek vysoko nad hranici zapalovacího napětí. U zvýšeného napětí na dutince je větší pravděpodobnost, že volná částice prolétávající vzorkem získá potřebnou energii ke spuštění ionizace a neprolétne jen vzorkem dále do prostoru.

Takovéto zvyšování napětí je limitováno elektrickou pevností dielektrického materiálu obklopeného kolem dutinky, kdy hrozí průraz dielektrika a znehodnocení vzorku. Proto je dobré po výskytu první stabilní výbojové činnosti s napětím klesnout na úroveň s udržitelnou výbojovou činností.

5.6 Ukázkový výpočet založený na Niemeyerova modelu

Experimentální výpočet provedeme pro vzorek 1 s těmito parametry popsaný v kapitole 3.4:

$$a = 1,5 \cdot 10^{-3} \text{ [m]}$$

$$b = 1,5 \cdot 10^{-3} \text{ [m]}$$

$$\epsilon_r 3,2 \text{ [-]}$$

$$\epsilon_0 = 8,854187 \cdot 10^{-12} [F \cdot m^{-1}]$$

$$U_0 = 20\ 000 [V]$$

$$d = 4 \cdot 10^{-3} \text{ [m]}$$

$$p = 101\ 000 \text{ [Pa]}$$

$$K = 3$$

$$K_{\text{cr}} = 9$$

$$\beta = 2$$

$$C = 4 \cdot 10^{-4} \text{ [Pa^{\beta \cdot 1} \cdot m^{\beta \cdot 1} \cdot V^{\cdot \beta}]}$$

$$(E/p)_{cr} = 25 [V \cdot Pa^{-1} \cdot m^{-1}]$$

$$\gamma = 0,16$$

Ukázkový výpočet:

$$g = \frac{1}{2} \cdot \frac{\frac{1.5}{3}}{\left(\frac{1.5}{1.5}\right)^2} [1 + 3.2 \cdot (3 - 1)] = 1.85 [-]$$
(28)

$$B = \frac{\left(\frac{9}{4 \cdot 10^{-4}}\right)^{\frac{1}{2}}}{25} = 6 \left[Pa^{1/2} \cdot m^{1/2}\right]$$
(29)

$$n = \frac{1}{2} [-] \tag{30}$$

$$f = \frac{3 \cdot 3,2}{1 + (3 - 1) \cdot 3,2} = 1,2973 [-]$$
(31)

$$F = \frac{1 + \frac{6}{(101\ 000\ \cdot\ 3\ \cdot\ 10^{-3})^{0,5}}}{1,2973} = 1,03653\ [-]$$
(32)

$$U_0^{inc} = \frac{25 \cdot 101\ 000 \cdot 1,03653}{\frac{5\ 000}{20\ 000}} = 10\ 469\ [V]$$
(33)

$$q_{min} = \pi \cdot \varepsilon_0 \cdot 1,85 \cdot 25 \cdot 101\ 000 \cdot 3 \cdot 10^{-6}$$
$$\cdot \left(1 - 0,16 + \frac{6}{(101\ 000 \cdot 3 \cdot 10^{-3})^{0,5}}\right)$$
$$= 1,385 \cdot 10^{-9} [C]$$
(34)

$$q_{max} \approx 2 \cdot \left(\frac{20\ 000}{10\ 469}\right) \cdot 1,385 \cdot 10^{-9} = 5,293 \cdot 10^{-9} \text{ [C]}$$
 (35)

$$g' = \frac{4}{3} \cdot \frac{3,2 \cdot 3}{1+3,2 \cdot (3-1)} \cdot \frac{1,5 \cdot 10^{-3}}{3 \cdot 10^{-3}} = 0,86487 [-]$$
(36)
$$q'_{min} = \frac{3}{8} \cdot \pi \cdot \varepsilon_0 \cdot (2 \cdot 3,2+1) \cdot 25 \cdot 101\ 000$$
$$\cdot \left(1 - 0,16 + \frac{1,03653}{1,2973}\right) \cdot 3 \cdot 10^{-9} \cdot \frac{1}{4} \cdot 0,86487$$
(37)
$$= 1,34797 \cdot 10^{-9} [C]$$

$$q'_{max} \approx 1,34797 \cdot 10^{-9} \cdot 2 \cdot \left(\frac{20\ 000}{10\ 469}\right) = 5,15034 \cdot 10^{-9} [C]$$
 (38)

Vztahy (8) – (21) jsou odvozeny a upraveny tak, aby se daly bez úprav použít na jakoukoliv dutinku elipsoidových tvarů o různých rozměrech a parametrech dielektrického materiálu. Výpočet, který je zde zmíněn pro kulovou dutinku, lze tedy analogicky použít pro ostatní dutinky, u kterých se délky os *a* a *b* nerovnají. Na obrázku 19 a obrázku 20 jsou vidět průřezy zbylých dvou vzorků.

Obrázek 20 - Průřez vzorku 13

6 Zhodnocení výsledků

6.1 Porovnání rozvinutých paternů jednotlivých vzorků

6.1.1 Etapy rozvoje paternu

Rozvinutý patern částečných výbojů nelze získat ihned po prvním výskytu výbojů, ale až po určité době, po kterou se patern rozvíjí. Tato doba obvykle trvá řádově několik hodin. Na následujících obrázcích bude zobrazen a stručně popsán rozvoj paternu částečných výbojů. Prvou fázi rozvoje ihned po ionizaci dutinky můžeme vidět na obrázku 28. Zde vznikají výboje v celé půlperiodě sinusového napětí nad hodnotou zapalovacího napětí. V tuto chvíli se dá odečíst hodnota minimálního a maximálního přeneseného zdánlivého náboje, neboť tyto hodnoty se v této fázi rovnají hodnotám rozvinutých paternů. Na obrázku 21 lze rozlišit počáteční lokalizování výbojů do malých center. Soustředění téměř velikostně stejných výbojů do těchto center vychází s největší pravděpodobností ze vzniku výboje pokaždé, když se na dutince objeví vyšší napětí (s kladným gradientem napětí) než zapalovací, tak jak je to zobrazeno na obrázku 5. Jak už bylo popsáno výše, počet částečných výbojů za sekundu závisí na velikosti přiloženého napětí. S tím tedy i souvisí množství těchto center s lokalizovanými výboji. V případě hůře ionizované dutinky mezi výboji se mohou výboje vyskytovat i s klesajícím aplikovaným napětím.

Obrázek 21 - Rozvoj paternu částečného výboje (1)

Na následujícím obrázku 22 je vidět další fáze vývoje. V této fázi vývoje se patern výbojů rozděluje na dvě části. Levá část s největší pravděpodobností zobrazuje paměťový efekt výboje vznikající s podporou pole vlivem usazování prostorového na stěny dutinky z předchozího výboje. Je-li vnější elektrické pole a elektrické pole vzniklé uloženým prostorovým nábojem stejně orientované, může dojít v důsledku složení polí k nárustu intenzity elektrického pole nad maximální hodnotu danou napěťovým zdrojem. Přesuny nábojů pak mohou mít větší energii. Tyto jevy vznikají z důvodu snížené dostupnosti volného elektronu a snížené pravděpodobnosti výskytu výboje. Mezi výboji mohou poté

vznikat delší prodlevy, díky kterým dochází ke zvětšení prostorového náboje na stěnách dutinky.

Po tomto výboji pravděpodobně zůstává dutinka stále dostatečně ionizovaná a dochází s vyšší pravděpodobností k výbojům při každém překročení zapalovací hodnoty napětí, ovšem už o menších hodnotách. Tyto výboje v obrázku symbolizuje základna paternu.

Obrázek 22 - Rozvoj paternu částečného výboje (2)

Obrázek 23 - Rozvinutý patern částečného výboje vzorku 1

Výsledný rozvinutý patern je vidět na obrázku 23. Tato fáze má dobu trvání řádově jednotky až desítky hodin. Tato doba je ovlivněna materiálem okolního dielektrika a velikostí přiloženého elektrického pole. Po této fázi následuje fáze s poklesem velikosti q_{max} na q_{min} trvající v závislosti na napětí a materiálu řádově stovky hodin. V závěrečné fázi vývoje před samotným elektrochemickým průrazem dielektrika vznikají nepřetržitě po celou dobu periody přiloženého napětí o velikosti od 0 pC do zhruba 1/2 q_{max}. [15]

6.1.2 Porovnání rozvinutých paternů

Na následujících obrázcích je vidět porovnání paternů vzorků 1 a 11. U vzorku 13 se nepodařilo udržet stabilní výbojovou činnost a nedošlo tedy k rozvinutí paternu až do této

fáze. Může to být z důvodu "malého" objemu dutinky, který zvyšuje pravděpodobnost zachycení kosmického záření nutného ke spuštění lavinové ionizace.

 100
 30000
 70000
 120000
 120000
 100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 1100000
 11000000
 11000000
 11000000
 <td

Porovnáním obrázku 24 a obrázku 25 si můžeme všimnout různého rozdělení složek paternu. Na obrázku 24 jsou téměř rovnoměrně zastoupeny obě části paternu, kdežto na obrázku 25 je jako majoritní složka vidět tzv. "ohon" zobrazující výboje vznikající s podporou pole prostorového náboje. Složka základny paternu u vzorku 11 je zastoupena méně jak u vzorku 1. Pravděpodobně je to vlivem nižšího čísla n zobrazujícího počet výbojů za sekundu a jak už bylo popsáno, závisejícího na velikosti přiloženého napětí. Toto přiložené napětí bylo při záznamu výsledků u vzorku 11 přibližně 2/3 přiloženého napětí na vzorku 1 z důvodu velkých přenosů nábojů a obav o průraz dielektrika.

6.2 Porovnání změřených výsledků s Nieyemerovým modelem

6.2.1 Odečet změřeného minimálního a maximálního zdánlivého náboje

Z následujících obrázků odečteme pro porovnání minimální přenesený zdánlivý náboj a maximální přenesený zdánlivý náboj. Hodnoty odečítáme z rozvinutých paternů popsané v 6.1.1 anebo prvotní fáze rozvoje jako na obrázku 28. Za minimální přenesený zdánlivý náboj z grafů bereme takový, který je součástí "základny" paternu částečného výboje, nikoliv výboj náhodně vyskytující se v prostoru mezi touto základnou a rušením. Hodnotu maximálního náboje Q_{Peak} můžeme odečíst přímo z programu, uvedenou v tabulce v pravé části obrázků.

Obrázek 27 - Výsledek měření dutinky vzorku 11

Obrázek 28 - Změřený patern částečných výbojů vzorku 13

6.2.2 Změřené zapalovací a zhášecí napětí

Stanovení zapalovacího napětí vychází ze statistického průměru změřených výsledků. U každého vzorku bylo po "zahoření" dutinky, respektive po ustálené výbojové činnosti v dutince, sníženo napětí na nulové a poté pomalu zvyšováno, dokud program nezačal detekovat částečné výboje v měřeném vzorku od hodnoty 300 pC. Hodnoty těchto napětí pro vzorek 1 můžeme odečíst z obrázku 29. Na tomto obrázku jsou na vodorovné ose vyneseny hodnoty napětí v kV a na svislé ose velikosti výbojů v nC. Vertikální růst světle zelených křivek značí zapalovací napětí a příslušnou velikost přeneseného zdánlivého náboje. Tmavě zelené křivky pak uroveň výbojů v závisloti na klesajícím napětí. Z obrázků tedy můžeme stanovit jak zapalovací napětí, tak zhášecí. V tabulce 4 je vypočten aritmetický průměr z výsledů z obrázku 29 a obrázku 30.

Obrázek 30 - Zapalovací a zhášecí napětí vzorku 11

6.2.3 Porovnání výsledků

		Změřené hodnoty [V]			[V]	Průměr změřených hodnot [V]
Vzorek 1	Zapalovací napětí	7 210	7 470	7 710	7 750	7 535
	Zhášecí napětí	6 030	6 190	6 780	6 780	6 445
Vzorek 11	Zapalovací napětí	6 280	6 460	6 930	6 972	6 661
	Zhášecí napětí	4 390	5 270	5 310	-	4 990
Vzorek 13	Zapalovací napětí	-	-	-	-	-
	Zhášecí napětí	-	-	-	-	-

	Vzorek	Zapalovací napětí [V]	Minimální zdánlivý náboj [C]	Minimální skutečný náboj [C]	Maximální zdánlivý náboj [C]	Maximální skutečný náboj [C]
04	Změřeno	7 535	1,300·10 ⁻⁹	X	5,677·10 ⁻⁹	X
01	Vypočteno	10 478	1,340·10 ⁻⁹	1,378·10 ⁻⁹	5,114·10 ⁻⁹	5,260·10 ⁻⁹
	Změřeno	6 661	3,150·10 ⁻⁹	X	11,770·10 ⁻⁹	Х
11	Vypočteno	8 926	1,572·10 ⁻⁹	3,130·10 ⁻⁹	4,932·10 ⁻⁹	9,819·10 ⁻⁹
13	Změřeno	-	0,870·10 ⁻⁹	X	2,335·10 ⁻⁹	X
	Vypočteno	11 254	1,247·10 ⁻⁹	0,877·10 ⁻⁹	3,990·10 ⁻⁹	2,806·10 ⁻⁹

Tabulka 4 - Výsledky zapalovacího a zhášecího napětí

Tabulka 5 - Porovnání změřených a vypočtených výsledků

Zapalovací napětí bylo pro vzorky 1 a 11 matematickým modelem stanoveno zhruba 1,4 krát větší, než bylo na vzorcích změřeno, jak je uvedeno v tabulce 5. Porovnáním zapalovacích napětí mezi vzorky si lze všimnout závislosti zapalovacího napětí v dutince na rozměrech dutinky v ose *b* a to tak, že s rostoucím průměrem dutinky v ose kolmé k elektrickému poli klesá zapalovací napětí.

Porovnání minimálních přenesených zdánlivých nábojů s výpočty vychází příznivě pouze pro vzorek 1 s rozdílem +3 % ze změřeného výsledku. U zbylých vzorků chyba vychází – 50 % u vzorku 11 a +43 % u vzorku 13 ze změřených výsledků. U maximálních zdánlivých přenesených nábojů se výsledky liší ještě více. Vypočtený výsledek se od změřeného liší o –10 % u vzorku 1, u vzorku 11 je rozdíl výsledků –58 % a u vzorku 13 až +71 %. Změřeným výsledkům se více podobají výsledky výpočtů skutečných přenesených nábojů, které se podle teorie v 2.5.2 měřit nedají. Zde je rozdíl porovnání největší u maximálních nábojů u vzorků 11 a 13 a to +17 % a +20 %. Zbylé hodnoty se pohybují s chybami v řádech jednotek procent. Vezmeme-li na vědomí výšku dutinky / vzhledem k výšce vzorku, která tvoří 3/4 této výšky a velikost elektrod vzhledem k šířce dutinky, mohli bychom s nadsázkou říci, že většina injektovaného náboje elektrodami představuje právě spočtený skutečný přenesený náboj v dutince.

6.3 Vizuální porovnání stěn dutinky

Po dokončení měření byly vzorky s dutinkami rozříznuty napůl za účelem ověření předpokladů o degradaci materiálu vlivem výskytu částečných výbojů. Podle změřených výsledků docházelo v dutince uvnitř vzorku 11 k největšímu přesunů nábojů. Proto se i předpokládá, že i na stěnách dutinky by se degradace materiálu měla projevit nejvíce.

Obrázek 31 - Průřez vzorkem 11

Na obrázku 31 je zřetelně vidět zvýšená drsnost povrchu v horní polorovině dutinky. V případě, že by toto zdrsnění povrchu bylo způsobeno částečnými výboji v dutině, znamenalo by to výskyt streamerů částečných výbojů z každého bodu povrhu dutinky a viditelnou degradaci materiálu v relativně nízkém časovém intervalu. Zde je třeba uvážit i případný nedokonalý 3D tisk vznikající přemostěním dutinky. Na následujícím obrázku je zobrazen průřez vzorku 13, který byl znehodnocen elektrickým průrazem v kombinaci s tepelným průrazem.

Obrázek 32 – Průřez vzorkem 13

7 Závěr

Náplní práce bylo seznámení se s problematikou částečných výbojů v izolačních systémech. V práci je zpracována rešerše pro modelování výbojové činnosti vlivem různých rozměrů defektů v dielektriku, která je porovnána s výsledky z experimentálního měření.

V prvé kapitole byly popsány příčiny vzniku elektrických výbojů, jejich rozdělení, parametry a důsledky výskytu v různých dielektrických materiálech. V této části byl kladen především důraz na výskyt výbojů v plynných látkách, neboť výbojům v plynných látkách se zbytek práce věnoval.

Jak bylo psáno v úvodu, částečné výboje mají nepříznivý vliv na bezproblémový chod zařízení a v některých případech může docházet i k poruchám izolace zařízení. Tomuto se věnovala druhá část práce, která nepříznivé dopady výbojů na izolaci popisovala podrobněji, doplňovala o příklady typů částečných výbojů podle jejich výskytů a definovala základní parametry pomocí normy ČSN EN 60270.

Pro představení činnosti částečných výbojů posloužily dva základní kapacitní modely – tříkapacitní Gemant-Philippův model a model rozšířený o vliv okolí dutinky – Böningův model. U každého byly popsány principy činnosti a převedeny do praxe včetně časových průběhů napětí a proudu částečných výbojů. V této kapitole je popsán i Niemeyerův matematický model pro modelování činnosti částečných výbojů, pomocí kterého byl následně proveden výpočet a výsledky porovnány s experimentálními výsledky z měření.

Poslední kapitola teoretické části práce zmiňuje jednotlivé metody měření výbojové činnosti a rozlišuje je dle způsobu uzemnění měřeného objektu. Aby byla data z měření vypovídající, je důležité znát vliv rušení v daném místě a od výsledků jej z měření odečíst. V případě, že se elektromagnetické rušení nedá spolehlivě odstranit, existují i neelektrické metody měření částečných výbojů popsané v práci.

V experimentální části práce bylo nejprve popsáno pracoviště, tištěné vzorky, kalibrace měřící soustavy a proveden ukázkový výpočet Niemeyerova matematického modelu. Výsledky tohoto modelu nepotvrzují předpoklady, kdy by skutečný přenesený náboj v dutince měl být menší než změřitelný zdánlivý přenesený náboj mezi elektrodami. Tato skutečnost vychází už z geometrického faktoru pro zdánlivý náboj *g*['], který je několikanásobně nižší než geometrický faktor pro skutečný náboj *g*. V dostupné literatuře nebylo zmíněno vysvětlení tohoto jevu.

Změřené výsledky zdánlivých maximálních a minimálních přenesených nábojů takřka souhlasí s výsledky z matematického modelu pouze pro vzorek 1. Zbylé dva vzorky se

v těchto přenesených nábojích liší až o 130% z vypočteného výsledku. Výsledky spolu vychází lépe, porovnáme-li výsledky pro vypočtený skutečný náboj a změřený zdánlivý náboj. V uvážení velikosti dutinky ku výšce vzorku by se dalo říct, že změřený náboj je právě skutečný přenesený náboj v dutince.

Z výpočtů je vidět, že zapalovací napětí na dutince roste s klesajícím průměrem dutinky v ose horizontální. To bylo ověřeno pro experimentálním měřením pro vzorky 1 a 11. U vzorku 13 se nepodařilo dosáhnout stabilní výbojové činnosti, která je nutná pro odečtení zapalovacího napětí. Vypočtené zapalovací napětí je průměrně o 36% vyšší než změřené na elektrodách přiložených na vzorek. Skutečné napětí, které se změřit nedá, je tedy ještě nižší o úbytek napětí na vrstvě dielektrika nad a pod dutinkou.

Práce byla zaměřena na měření a hodnocení parametrů paternů částečných výbojů v závislosti na různých tvarech defektů v izolačních systémech. Přínos pro praktické využití by mohl být v hodnocení kvality izolačních systémů díky měření se zpětným výpočtem rozměrů defektu. Díky získání rozměrů defektu by se dalším výzkumem mohly zjistit přesné příčiny vzniku defektu a eliminovat je.

- [1] BRANŠOVSKÝ, Martin. Životnost a spolehlivost materiálů v elektrotechnice. Plzeň, 2012. Diplomová práce. ZČU.
- [2] Technika vysokých napětí: Elektrická pevnost [online]. České vysoké učení technické [cit. 2020-08-25]. Dostupné z: https://www.powerwiki.cz/attach/TVNPodklady/TVN Elektricka Pevnost.pdf
- [3] GROSS, Boleslav. *Elektrické výboje v plynech*. Praha: SNTL Nakladatelství technické literatury, 1967.
- [4] MENTLÍK, Václav. *Diagnostika elektrických zařízení*. Praha: BEN Technická literatura, 2008. ISBN 978-80-7300-232-9.
- [5] Technika zkoušek vysokým napětím Měření částečních výbojů. Praha: Český normalizační institut, 2001.
- [6] KÜCHLER, Andreas. *High Voltage Engineering: Fundamentals Technology Applications*. Berlin: VDI-Buch, 2018. ISBN 978-3-642-11992-7.
- [7] MENTLÍK, Václav. Dielektrické prvky a systémy. První. Praha: BEN technická literatura, 2006. ISBN 80-730-0189-6.
- [8] PAITHANKAR, A.A. a A.D. MOKASHI. Can PD phenomenon be analysed by deterministic chaos?. Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference [online]. IEEE, 1995, , 283-289 [cit. 2020-12-10]. ISBN 0-7803-3959-2. Dostupné z: doi:10.1109/EEIC.1997.651098
- [9] ElectroScope. 2008, . ISSN 1802–4564. Dostupné také z: https://dspace5.zcu.cz/bitstream/11025/454/1/r2c2c1.pdf
- [10] ZÁLIŠ, Karel. *Částečné výboje v izolačních systémech elektrických strojů*. 1. Praha: Academia, 2005. ISBN 80-200-1358-X.
- [11] FULNEČEK, Jan. Identifikace obrazců částečných výbojů VN izolačních systémů. 17. listopadu 2172/15, Ostrava, 2018. Disertační práce. VŠB – Technická Univerzita Ostrava, Fakulta elektrotechniky a informatiky.
- [12] NIEMEYER, Lutz. A Generalized Approach to Partial Discharge Modeling. *IEEE Transactions* on Dielectrics and Electrical Insulation [online]. The ALESSANDRO VOLTA Lecture, 1994, 4(2), 19 [cit. 2020-10-18]. Dostupné z: https://ieeexplore.ieee.org/document/407017
- [13] CRICHTON, G. C. Partial Discharges in Ellipsoidal and Spheroidal Voids. IEEE Transactions on Dielectrics and Electrical Insulation [online]. 1989, 24(2), 8 [cit. 2020-11-23]. Dostupné z: https://ieeexplore.ieee.org/document/90292
- [14] VESELÝ, P, T TICHÝ, O ŠEFL a E HORYNOVÁ. Evaluation of dielectric properties of 3D printed objects based on printing resolution. *IOP Conference Series: Materials Science and Engineering* [online]. 2018, **461**(012091), 7 [cit. 2020-12-09]. ISSN 1757-899X. Dostupné z: doi:10.1088/1757-899X/461/1/012091

[15] NIEMEYER, L. a F. GUTFLEISH. Measurement and Simulation of PD in Epoxy Voids. IEEE Transactions on Dielectrics and Electrical Insulation [online]. 1995, 5(2), 14 [cit. 2020-12-04]. Dostupné z: https://ieeexplore.ieee.org/document/469970